成都泓润科技有限公司

联系我们

电话:028-66765703

传真:028-66765625

地址:成都市高新区(西区)西区大道99号附1号

当前位置:首页 > 典型应用 > 技术中心

新型膜材料聚酰胺膜初步用于脱盐领域
浏览次数:386发布时间:2019-01-22 15:34:50 文章来源:

电喷雾技术是基于膜分离技术的一种电喷雾技术,它的原理是通过直流电流来连接到两根针,针和鼓的距离保保持在2cm左右,之后,每根针在对应的溶液中挤出一种液体。

首先将基板连接到旋转鼓上。当单体溶液从针尖出现时,它们喷射并沉积在收集器表面上并在彼此接触时发生反应。为了确保覆盖整个基板,针台沿着收集器表面移动。


将膜印刷在铝箔上,以表征聚酰胺膜交联密度、厚度和机械性能等。印刷后,将薄膜从箔转移到任何基材上或保持为独立的薄膜。

(D)聚酰胺厚度作为MPD和TMC负载的函数,包括每次扫描的相应厚度。(E)聚酰胺厚度与MPD:TMC浓度比为0.125:0.075时的扫描次数的函数关系。

较低的单体浓度不仅得到了较薄的聚酰胺薄膜,而且还可以更好地控制每次扫描的薄膜厚度。基于五次扫描制备薄至20nm的聚酰胺薄膜,表明每次扫描的平均厚度仅为4nm。每次扫描的厚度一致,随着扫描次数的增加,膜厚度呈线性增加。

(F)PAN50,(G)PS20和(H)和(I) PAN450 TFC膜的横截面TEM,用5次扫描和MPD:TMC浓度比为0.5:0.3制成。

将相同组成的膜印刷到多孔聚合物基质上,以评价其厚度、表面形态、粗糙度、脱盐性能。印刷在三个UF膜基底上的聚酰胺层显示出与印刷在Al箔上相似的厚度。从图I可见五层聚酰胺薄膜,每层15±3nm。每次扫描的厚度很好地对应于通过AFM在图D中的Al箔上捕获的每个扫描数据的厚度。

对于不同浓度的MPD和TMC,在100000×(放大倍数)下的TFC膜SEM图像。下面的底物和Dow SW30XLE膜显示为对照。(B)一系列3×3mm AFM形貌图像显示MPD:TMC浓度比增加的表面粗糙度,或者与5次扫描一致(顶部)或者由于连续扫描特定的MPD:TMC浓度比为0.5:0.3(下)。第一列仅显示支撑层,没有任何聚酰胺薄膜用于比较。插入数字表示浓度比或扫描次数。(C)显示通过使用三种不同的UF膜作为一系列MPD:TMC浓度比的底物的TFC膜的RMS表面粗糙度的图。图中的第一点仅表示支撑层的粗糙度。(D)表面粗糙度随着PS20 TFC膜的三种不同MPD:TMC浓度比的扫描次数而增加。商业Dow SW30XLETFC RO膜在(C)和(D)中以虚线显示用于基准测试。

工业标准的Dow SW30XLE RO膜,与传统聚酰胺薄膜的典型脊-谷状形态相比,在所有单体浓度下,在所有支撑层上形成明显更光滑的聚酰胺薄膜。这些结果通过AFM分析来量化,RMS粗糙度随着单体浓度的增加和扫描次数而增加。对于每种单体浓度,在所有支撑层中膜的粗糙度相似。在最高MPD:TMC浓度,0.5:0.3条件下,最大粗糙度为40±4 nm,然而,即使这些最粗糙的薄膜也不到Dow SW30XLE薄膜粗糙度的一半。但最低单体浓度产生的粗糙度值小于2nm的薄膜与支撑体的粗糙度无法区分。

所有研究的膜的NaCl盐截留和纯水渗透性。(B和C)UF基质之间的纯水渗透性和NaCl盐截留的比较分别对于通过5次扫描制备的TFC膜,MPD和TMC负载增加~1个数量级。商业Dow SW30XLE TFCRO膜在(B)和(C)中显示为虚线,在(A)中显示为橙色星点用于基准测试。

使用SW30XLETFC RO膜作为对照并用于基准测试,可以发现六种膜具有更高的截留率和水渗透性,这些膜具有可调节的厚度和更低的粗糙度,也表现出相当好的性能。此外,较高浓度的单体可以形成较厚的和较低渗透性的薄膜,改善脱盐率。

结论得知,在膜分离技术上研发的聚酰胺膜分离能够有效的脱盐,而且在脱盐效率较好,成品率较高。不过耐用性还需要得到一定的改进。